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Abstract Plant species in grasslands are often sepa-
rated into groups (C4 and C3 grasses, and forbs) with
presumed links to ecosystem functioning. Each of
these in turn can be separated into native and intro-
duced (i.e., exotic) species. Although numerous studies
have compared plant traits between the traditional
groups of grasses and forbs, fewer have compared
native versus introduced species. Introduced grass spe-
cies, which were often introduced to prevent erosion or
to improve grazing opportunities, have become com-
mon or even dominant species in grasslands. By virtue
of their abundances, introduced species may alter eco-
systems if they diVer from natives in growth and alloca-
tion patterns. Introduced grasses were probably
selected nonrandomly from the source population for
forage (aboveground) productivity. Based on this
expectation, aboveground production is predicted to
be greater and root mass fraction to be smaller in intro-
duced than native species. We compared root and
shoot distribution and tissue quality between intro-
duced and native C4 grass species in the Blackland
Prairie region of Central Texas, USA, and then com-
pared diVerences to the more well-studied divergence

between C4 grasses and forbs. Comparisons were made
in experimental monocultures planted with equal-sized
transplants on a common soil type and at the same den-
sity. Aboveground productivity and C:N ratios were
higher, on average, in native grasses than in native
forbs, as expected. Native and introduced grasses had
comparable amounts of shallow root biomass and tis-
sue C:N ratios. However, aboveground productivity
and total N were lower and deep root biomass and root
mass fraction were greater in native than introduced
grasses. These diVerences in average biomass distribu-
tion and N could be important to ecosystems in cases
where native and introduced grasses have been
exchanged. Our results indicate that native–introduced
status may be important when interpreting species
eVects on grassland processes like productivity and
plant N accumulation.
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Introduction

Because species composition can vary enormously
from place to place, it has become common to group
species into functional groups in order to generalize
across sites and studies. For example, grassland species
are usually classiWed into functional groups based on
their mode of photosynthesis (C4 or C3), their growth
form and taxonomy (e.g., grass-like graminoids or
broad-leafed forbs), or their ability to harbor N-Wxing
bacteria (legumes or nonlegumes). Species (or func-
tional group) composition has been found to be an
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important predictor of primary productivity, nutrient
cycling, and decomposition rates (e.g., Wedin and Til-
man 1990; Chapin et al. 1996). Species (or functional
group) composition alone explained as much or more
of the variation in productivity as species richness
(reviewed by Loreau et al. 2001 and Hooper et al.
2005) or evenness (Wilsey and Potvin 2000; Polley
et al. 2003) in tests of biodiversity–productivity rela-
tionships.

Another way of grouping species that is potentially
important to ecosystem functioning is according to
their native–introduced status (Vitousek 1990, 1994;
Baruch and Goldstein 1999; Richardson et al. 2000;
Ehrenfeld 2003; D’Antonio and Hobbie 2005; Reed
et al. 2005). In grasslands of North America, many
introduced species have spread after their introduction
to become common or even the dominant species. For
example, the grasses Bromus inermis (smooth brome)
and Agropyron cristatum (crested wheatgrass) are
dominant grasses in much of the Northern Plains
region (e.g., Christian and Wilson 1999; Cully et al.
2003), introduced species of the genus Agropyron (now
Pseudogneria) or Centaurea dominate some inter-
mountain grasslands (Caldwell et al. 1981; Richards
1984; Pyke 1990; Callaway and Aschehoug 2000; Call-
away et al. 2004), introduced annuals dominate Cali-
fornia grasslands (e.g., Seabloom et al. 2003), and the
grass Bothriochloa ischaemum (KR Bluestem) domi-
nates many central Texas grasslands (Wilsey and Pol-
ley et al. 2003). These species have spread rapidly. For
example, Correll and Johnston (1979) stated in the
Flora of Texas that Bothriochloa ischaemum was “not
persisting except in cultivation or along roadsides.”

The spread of introduced species and the potential
homogenization of Xora has become a global issue
(Vitousek 1994; Wilcove et al. 1998; Levine and
D’Antonio 1999; Olden and PoV 2003), yet we have
few experimental tests of whether introduced species
diVer from natives in traits that aVect community and
ecosystem processes (Baruch and Goldstein 1999;
Smith and Knapp 2001; Ehrenfeld 2003). Vitousek
(1990) proposed that introduced species could impact
ecosystem processes if they: (1) acquire and use
resources diVerently from native species, (2) alter tro-
phic relationships, or (3) change the frequency or
intensity of disturbance. Introduced species can also
aVect ecosystem processes through changes in plant–
soil organism feedbacks (e.g., EhrenWeld et al. 2001;
Evans et al. 2001). In this paper, we focus on the Wrst of
these processes: whether resources are used diVerently
between introduced species and natives. The idea that
introduced species are drivers of change in plant diver-
sity (which is widely accepted, but infrequently tested)

implies that introduced species diVer from natives in
traits associated with resource uptake that ultimately
determine the outcome of plant–plant interactions.

There is currently no strong consensus on whether
introduced species diVer from natives in their above-
ground growth rates, and characteristics based on
belowground growth are especially poorly understood.
Ehrenfeld (2003) found that net primary productivity
and standing crop biomass were higher in invaded sites
in 14 out of 18 cases she reviewed. In two other recent
review articles, Vilá and Wiener (2004) found greater
aboveground growth rates in natives than introduced
species, whereas Daehler (2003) found that there was
no consistent diVerence between natives and intro-
duced species. A potential problem with many pub-
lished comparisons is that they do not replicate species
within each introduced or native group, and the lack of
replication may have been responsible for the lack of a
signiWcant diVerence in the review of Daehler (2003),
which was based on a tally of results as native > exotic,
native = exotic, or native < exotic. Wilsey (2005) found
that only 16% of studies in which native and intro-
duced species were compared included replication, and
that conclusions about exotic–native diVerences varied
between replicated and unreplicated data sets. Paired
species (i.e., one native and one introduced species)
studies are directly relevant only in ecosystems where
monocultures are common, such as salt marshes (e.g.,
Callaway and Josselyn 1992). They are much less
directly relevant to ecosystems like grasslands where
multiple species interact at small spatial scales. In these
systems, a lack of species replication is problematic for
developing general predictions on how introductions
impact ecosystems, because large variation among spe-
cies within native or introduced species groups may
obscure average diVerences between groups (Wilsey
2005). This problem can be circumvented by replicat-
ing introduced and native species in comparative stud-
ies (Baruch and Goldstein 1999; Smith and Knapp
2001). Furthermore, very little data exist on below-
ground diVerences between native and introduced spe-
cies, with only a few studies including root data (e.g.,
refer to the data set collected by Daehler 2003). This is
because of the great diYculty in diVerentiating roots
among species in mixed stands.

Most introduced grass species were intentionally
introduced to reduce erosion or to improve grazing
opportunities. Consequently, these species were proba-
bly selected by humans for forage (aboveground) pro-
ductivity and N accumulation. This human selection
could have occurred either with or without enemy
release. Thus, we predict that aboveground production
and N accumulation are greater and root mass fraction
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is smaller in introduced than in native species. To test
this hypothesis, we compared diVerences in root and
shoot biomass and tissue quality between introduced
and native C4 grass species grown in experimental
monocultures with diVerences observed between
native C4 grass and forb species. Experimental compar-
isons such as these have the advantage of avoiding con-
founding factors that can complicate observational and
comparative studies [i.e., whether introduced species
are the drivers or passengers of ecosystem change
(McDougal and Turkington 2005)]. For example, 70%
of the studies reviewed by Ehrenfeld (2003) were
based on observational studies of invaded versus unin-
vaded sites. In these cases, confounding variables may
be present due to the nonrandom nature of invasion
(Levine and D’Antonio 1999; McDougal and Turking-
ton 2005). However, manipulative experiments have
the disadvantage of disturbing soil during plot estab-
lishment (D’Antonio and Hobbie 2005). This distur-
bance is less of an issue if the study species establish
with disturbance, as they do in our case. By comparing
plots with only a single species present, we are able to
measure root biomass by species.

Methods

Experimental design and study area

Our objectives were addressed in an experiment con-
ducted at the Grassland, Soil and Water Research Lab-
oratory in the Blackland Prairie region of Central
Texas on a vertisol soil. The climate of the area is sub-
humid, with an average of 864 mm of precipitation per
year. The Texas Blackland Prairie region, which was
formerly tallgrass prairie (Risser et al. 1981), contains
about 50% formerly cropped grasslands that have
become dominated by introduced grasses, as well as a
few scattered grasslands dominated by native species
(Wilsey and Polley 2003). A full description of our
experimental design, which included plots that varied
in species richness and evenness, is included in Wilsey
and Polley (2004). BrieXy, we planted 75 plots 1 £ 1 m
in area with 96 small equally sized seedlings that were
propagated in Weld soil in 4 in. pots before planting
them in mid-April 2001. Thirteen species were used in
our study, and each species was planted into three
monoculture plots (39 monocultures total). However,
we based the analysis on 11 of 13 species for reasons
explained below. Treatments were randomly assigned
within three blocks, each with 13 monoculture plots.

The 13 species used in this experiment were selected
because they are the most frequently found perennial

species within grasslands of the region. Wilsey and Pol-
ley (2003) sampled a nearby prairie remnant and found
that C4 grasses provide approximately 69% of the net
aboveground primary productivity, with annual and
perennial forbs at 28%, C3 grasses 2%, and legumes
1%. In grasslands dominated by introduced species, 66
and 21% of net primary productivity consisted of C4
and C3 grasses. Five of the species that we studied are
native C4 grasses: Schizachyrium scoparium (Michx.)
Nash, Sporobolus compositus (Poir.) Merr. (formerly
asper), Bothriochloa laguroides (DC.) Herter, Boute-
loua curtipendula (Michx.) Torr, and Sorghastrum
nutans (L.) Nash. Three are introduced C4 grasses:
Bothriochloa ischaemum (L.) Keng, Paspalum dilata-
tum Poir, and Panicum coloratum L. Four species are
native C3 forbs: Ratibida columnifera (Nutt.) Wooton
& Standl, Oenothera speciosa Nutt, Salvia azurea
Michx. ex Lam, and Echinacea purpurea (L.) Moench
(nomenclature follows Diggs et al. 1999). Thus, we rep-
licated native and introduced C4 grasses and native
forbs for comparisons. We did not include introduced
perennial forbs because none are common to the area.
We also planted the one common C3 grass in our area,
Nasella (formerly Stipa) leucotricha, but it was not
included here because species were not replicated
within the C3 grass group. Oenothera speciosa died fol-
lowing the Wrst year (possibly as a result of a beetle
outbreak) and was excluded from our analysis.

Response variables

Aboveground productivity was estimated with peak
biomass, which was collected in October of each year
by clipping all plants to 2 cm in height. Peak biomass
underestimates net primary productivity, but is a good
comparative estimate of net aboveground productivity
in this system because frost kills aboveground biomass
during the winter and there is no carryover of biomass
from year to year. Root biomass was estimated by
extracting roots from soil cores. Root biomass carried
over from year 1 to year 2, so it is more appropriate to
call root biomass “peak biomass” rather than produc-
tivity.

Roots were extracted from a 4.2 cm diameter soil
core removed from each plot during fall of year 1
(2001). Two cores per plot were collected in year 2
(2002). Each core was sectioned into an upper “shal-
low” (<20 cm) and lower “deep” (20–45 cm) layer to
examine diVerences in rooting distribution. Cores were
collected to 45 cm because most roots are found in this
layer of soil (Jackson et al. 1996). Virtually every root
observed was alive at sampling (personal observation).
Live roots were hand-picked from cores and were then
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washed over a 0.5 mm screen. Root mass fraction
(RMF) was calculated as (shallow + deep roots)/
(shallow + deep roots) + shoot biomass, with all vari-
ables scaled to a 1 £ 1 m area. Root mass fraction is
conceptually similar to root–shoot ratio, but it has
desirable statistical properties because it compares
root biomass to total plant size.

Aboveground biomass samples were ground
through a Wiley mill and analyzed for C and N content
with a CE Elantech (Lakewood, NJ, USA) Flash
EA1112 combustion C:N analyzer. The proportion of
N was then multiplied by the biomass to obtain esti-
mates of total aboveground N. Total aboveground N is
a measure of N accumulation by the aboveground bio-
mass during the current growing season.

Statistical analyses

Aboveground, shallow and deep-root biomass and
root mass fraction were analyzed with randomized
block, nested repeated measures multivariate
(MANOVA) and univariate analyses of variances
(ANOVA) using PROC GLM of SAS 8.1 (Littell et al.
2002). Both functional groups and species nested with
functional groups were considered as Wxed eVects
(Neter et al. 1996, pp 1127–1132). A Wxed-eVects
model was used because all major perennial species
from the area were used rather than a random sample
of species from a larger species pool. MANOVA is
appropriate when variables are moderately correlated
(Stevens 1986) because it takes into account correla-
tions among variables when comparing among groups
(Littell et al. 2002). Correlations among variables in
year 1 ranged from r=0.10 between deep-root biomass
and root mass fraction to r=¡0.73 between above-
ground biomass and root mass fraction. In year 2, they
ranged from r=0.08 to 0.15 between shallow and deep
root biomass and aboveground biomass, respectively,
to ¡0.68 between aboveground biomass and root mass
fraction. When MANOVA terms were signiWcant, uni-
variate ANOVA was then considered. A priori con-
trasts were made between grouped native and
introduced C4 grass species, and between grouped
native C4 grasses and native C4 forbs. An alternative
method of analyzing data using one-way models of
species eVects (n=11), along with a priori contrasts of
groups gave results similar to those presented here.
All variables were normally distributed (Wilks W, all
P values >0.1), but biomass variables were ln-trans-
formed, and RMF was arcsin(q) transformed to mini-
mize heteroscedasticity.

Tissue quality variables were measured in year 1
only, so they were analyzed with a randomized block

ANOVA with the same contrast statements as
described above. However, because aboveground bio-
mass and total aboveground N gave nearly identical
results (r=0.89, P<0.001, n=33), we analyzed biomass
alone as a surrogate for both variables.

Results

DiVerences between native and introduced C4 grasses

Introduced grass species diVered from native species in
biomass and allocation variables (i.e., the introduced
grass versus native grass contrast from the MANOVA
was signiWcant, Table 1). The amount of diVerence
between these groups was consistent across the two
years for all variables except aboveground biomass
(i.e., year £ contrast interaction in MANOVA was sig-
niWcant, Table 1).

DiVerences in mean peak aboveground and deep-
root biomass were opposite in direction between intro-
duced and native grass groups. In year 1, peak above-
ground biomass was greater on average by a factor of 2
for introduced (mean of 1.21 kg/m2) than for native
grasses (mean of 0.60 kg/m2) (Fig. 1a, Table 1). In year
2, it was greater by a factor of 1.6 (means, introduced:
0.74 kg/m2, native: 0.45 kg/m2). Total aboveground N
gave results very similar to biomass, with introduced
species having a mean of 7.3 g N/m2 and natives a mean
of 4.0 g N/m2 (Fig. 1b). Biomass of shallow roots did
not diVer between introduced and native grasses
(Fig. 2a, Table 1), but biomass of deep roots was about
two times greater for native than introduced grasses
(means of 78.5 and 128.0 g/m2 in years 1 and 2 for
natives and of 42.8 and 68.3 g/m2 for introduced spe-
cies, Table 1) (Fig. 2b). As a result of these diVerences
in peak aboveground and deep-root biomass, the pro-
portion of biomass allocated to roots (RMF) was
greater on average in native grasses (means: 0.51 in
year 1, 0.69 in year 2) than introduced grasses
(means: 0.36 in year 1, 0.50 in year 2) (Fig. 3). How-
ever, C:N ratio of aboveground tissues did not diVer
between native (mean of 64.2) and introduced (mean
of 63.9) C4 grass species (introduced grass vs. native
grass contrast, F(1,20)=0.01, P value >0.9, Table 2).

DiVerences between native C4 grasses and forbs

Native C4 grass species as a group also diVered from
forb species in biomass and allocation (i.e, the native
forb vs. native grass contrast from MANOVA was sig-
niWcant, Table 1). The amount of diVerence between
these groups was consistent across the two years for all
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variables except aboveground biomass and root mass
fraction (i.e., year £ contrast interaction in MANOVA
was signiWcant, Table 1).

On average, aboveground peak biomass and deep-
root biomass were greater for native grasses than for
forbs (Fig. 1, 2). Aboveground peak biomass was 2.6-
fold higher in grasses (mean 694.8) than forbs (272.4)
in year 1, and 1.2-fold higher in year 2 (523.6 for
grasses vs. 425.8 for forbs). Shallow root biomass did
not diVer between grasses and forbs. Deep roots were
higher for native grasses (year 1: 78.7 g/m2, year 2:
128.0 g/m2) than for forbs (year 1: 33.8 g/m2, year 2:
51.9 g/m2). Root mass fraction was greater for native
forbs (0.62) than for native grasses (0.51) during year 1
(time £ forb vs. grass contrast, P=0.037) but was simi-
lar during year 2 (0.64 vs. 0.69). Native forbs had lower
average C:N ratios (forb vs. grass contrast, F(1,20)=17.9,
P<0.01, mean of 51.5) than did native grasses (64.2)
(Table 2).

Variation among species within groups

We also found signiWcant variation among species
within functional groups for all variables except
deep-root biomass [MANOVA: species (functional
group) eVect, Table 1]. These diVerences were con-
sistent across years for all variables except above-
ground biomass, which varied slightly more in year 2
than year 1.

Discussion

We found diVerences in biomass production and distri-
bution between native and introduced C4 grasses that
were as great as the diVerences between grasses and
forbs. DiVerences between grasses and forbs have been
reported previously and are fairly well-understood
(e.g., Tjoelker et al. 2005, Polley et al. 2002). At our
study site, Polley et al. (2002) found that perennial
forbs had higher tissue N contents and diVered in plant
water status from the perennial grass Bothriochloa
ischaemum. The greater productivity of C4 grasses
compared to native forbs was especially apparent in
our system, where relatively high mean annual temper-
atures favor C4 over C3 photosynthesis. However, the
observed diVerences between native and introduced C4
grasses in their growth and allocation patterns was sur-
prising to us and could impact important ecosystem
and community-level processes in addition to the ones
(productivity and N uptake) documented here. Intro-
duced grasses had much higher aboveground produc-
tivity and N uptake, lower allocation to roots, and
lower deep-root biomass than did native grasses. It is
important to note that these introduced grasses are
common or even the dominant species in their native
ranges and are not merely early successional species
(Sims and Dewald 1982; McNaughton 1983; Soriano
1991; Loreti 2001). Furthermore, in contrast to the
results of Wedin and Tilman (1996); Baruch and

Table 1 Results from repeated measures MANOVA (numera-
tor and denominator df and F) and ANOVA (df, mean square
(MS) and F) for biomass and root-mass ratio among groups [na-
tive C4 grasses (N), introduced C4 grasses (I), or native forbs (F)],

between introduced and native C4 grasses (I vs. N contrast), be-
tween native C4 grasses and forbs (N vs. F contrast), and among
species within groups

a Wilk’s Lambda
b 0–20 cm depth
c 20–45 cm depth
9 0.05 < P<0.1, *0.01<P<0.05, **0.001<P<0.01, ***P<0.001

EVect MANOVA ANOVA

Above Shallow rootsb Deep roots c RMF

df,dfa F df MS F M S F MS F MS F

Block 8,34 1.3 2 0.00 0.4 0.1 0.1 0.3 0.5 0.00 0.1
Group 8,34 14.3*** 2 6.8 80.0*** 0.7 1.4 5.6 10.2*** 0.23 10.6***

I versus N 4,17 12.8*** 1 4.2 49.9*** 0.0 0.1 3.4 6.3* 0.34 15.8***

N versus F 4,17 15.3*** 1 4.2 50.0*** 1.4 2.7 10.7 19.5*** 0.01 0.5
Species (group) 32,64.3 5.0*** 8 2.0 23.9*** 1.4 2.7* 0.7 1.4 0.09 4.1**

Error 20 0.08 0.52 0.55 0.02
Year 4,17 11.8*** 1 0.3 25.2*** 2.8 7.2* 5.9 17.5*** 0.23 20.2***

Year £ block 8,34 1.5 2 0.1 5.9** 0.1 0.3 0.0 0.1 0.00 0.1
Year £ group 8,34 12.4*** 2 1.0 89.0*** 0.0 0.1 0.0 0.1 0.03 2.99

Year £ S (G) 32,64 2.6*** 2 0.1 9.6*** 0.6 1.6 0.5 1.5 0.02 2.09

I versus N 4,17 3.4* 1 0.1 5.5* 0.0 0.1 0.0 0.0 0.00 0.4
N versus F 4,17 28.6*** 1 1.5 127.7*** 0.1 0.1 0.0 0.2 0.06 5.8*

Error 20 0.01 0.39 0.33 0.01
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Goldstein (1999) and Craine and Lee (2003), the native
and introduced species we studied did not diVer in tis-
sue quality.

Although introduced and native grasses diVered in
patterns of peak aboveground and deep-root biomass,
it is important to emphasize that large diVerences
among species were unaccounted for by native–intro-
duced or grass–forb groupings (in all variables except
deep-root biomass). For example, the native species
Bothriochloa laguroides tended to have high above-

ground productivity that was more typical of the intro-
duced species (Fig. 1a). Anderson and Briske (1999)
found that this species is more abundant in heavily
than in lightly grazed grasslands, and it is largely absent
from intact prairies. This species has been character-
ized as a “weedy” grass (Hatch and Pluhar 1993) with a
wide distribution from the southern US to South
America (Soriano 1991). Species composition is consis-
tently found to be important in experiments of biodi-
versity and ecosystem functioning, where species (or
functional group) composition can explain as much or
more of the variation in productivity as species diver-

Fig. 1a–b Peak aboveground biomass (a) and total aboveground
(b) N (+SE) in three introduced C4 grass (IG), Wve native C4 grass
(NG), and three native forb (NF) species. Species are as follows :
IG1 Bothriochloa ischaemum, IG2 Panicum coloratum, IG3
Paspalum dilatatum, NG1 Schizachyrium scoparium, NG2 Sor-
ghastrum nutans, NG3 Bouteloua curtipendula, NG4: Bothrio-
chloa laguroides, NG5: Sporobolus asper, NF1: Echinacea
purpurea, NF2: Ratibida columnifera, NF3: Salvia azurea. Con-
trast results are from a priori contrasts that decompose the spe-
cies treatment into tests comparing introduced and native C4
grasses as well as native C4 grasses and native C3 forbs. Horizon-
tal lines indicate the approximate locations of two-year group
means
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sity (reviewed by Loreau et al. 2001 and Hooper et al.
2005).

Variation among species within groups can also
complicate interpretation of paired species experi-
ments, where diVerent outcomes (e.g., native >  intro-
duced, native = introduced, or native < introduced) are
possible between pairs solely due to the variation

among species within each group (Wilsey 2005). For
example, Wilsey (2005) reanalyzed the data presented
by Daehler (2003) and found that in replicated studies
aboveground biomass was higher for introduced than
for native species much more frequently than in nonre-
plicated studies (Wilsey 2005). In this study, if we had
chosen Bothriochloa laguroides by chance to be our
native species for comparisons with the introduced spe-
cies Paspalum dilatatum, we would have reached a con-
clusion about diVerences between native and
introduced species that was opposite to that observed
between group means (Wilsey 2005). This suggests that
results from studies in which species are replicated will
be less variable than those studies of a pair of species.

The introduced species studied here were intro-
duced primarily to improve grazing opportunities, and
we hypothesize that higher average aboveground pro-
ductivity (i.e., forage production) and N accumulation
were probably targeted by people who introduced
them (Caldwell et al. 1981; Simose and Baruch 1991).
One of the most common introduced species in the
Blackland Prairie region, Bothriochloa ischaemum,
was introduced from China in 1917 to reclaim marginal
farmland and was later planted along roadsides (Sims
and Dewald 1982; Diggs et al. 1999). Since then, it has
spread into both ungrazed and grazed areas. The other
two introduced grasses are common in Africa (Pani-
cum coloratum) and South America (Paspalum dilata-
tum), respectively (McNaughton 1983; Soriano 1991;
Loreti et al. 2001). In these cases, and perhaps in any
case where species were intentionally introduced, we
suggest that there was human selection for certain
characteristics that matched the objectives of the initial
introduction. This human selection may have resulted
in higher average aboveground biomass in introduced
species that may be independent of, or in addition to,
any possible enemy release eVects. In the case of these
introduced forage species, the enhanced aboveground
productivity may have made them attractive candi-
dates for improving grazing opportunities (Sims and
Dewald 1982), but their lower root mass fraction and
lower deep-root biomass may be having unanticipated
eVects on belowground processes.

Our results are largely consistent with the hypothe-
sis of Ehrenfeld (2003) that introduced species have
lower root–shoot ratios (root mass fraction). Ehrenfeld
(2003) reviewed six studies that compared root–shoot
ratio, Wve of which supported her conclusion that root–
shoot ratios are lower in invasive species. However, all
of these studies had variables that covaried with inva-
sive species abundance, such as disturbance (Ruther-
ford et al. 1986, Versfeld and van Wilgren 1986, Bolton
et al. 1993) or annual–perennial status (Holmes and

Fig. 3 Root mass fractions among three introduced C4 grasses
(IG), Wve native C4 grasses (NG), and three native forb (NF) spe-
cies. Abbreviations are the same as in the legend for Fig. 1. Hori-
zontal lines indicate the approximate locations of two-year group
means

Contrasts:
Introduced C4 vs. Native C4 grasses, F1,20 = 15.8, P < 0.001
Native C4 grasses vs. Native forbs, F1,20 = 0.5, P > 0.50
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Table 2 Species used in the study, and their least-square mean
C:N ratios in monoculture plots grown under a common soil type
and with common densities

Species C:N ratio

Native C4 grasses
Schizachyrium scoparium 70.3
Sporobolus asper 61.2
Bothriochloa laguroides 74.2
Bouteloua curtipendula 55.2
Sorghastrum nutans 60.3
Mean 64.2
Introduced C4 grasses
Bothriochloa ischaemum 60.5
Paspalum dilatatum 55.6
Panicum coloratum 75.6
Mean 63.9
Native C3 forbs
Ratibida columnifera 30.8
Salvia azurea 98.9
Echinacea purpurea 24.7
Mean 51.5
LS mean standard error 4.1
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Rice 1996). Here, we provide the Wrst experimental
support for the hypothesis by Ehrenfeld (2003) that
introduced species have lower root–shoot ratios (in our
case, root mass fraction) on average than do native
species under common environmental conditions.

The Wnding that native grass species have twice the
deep-root biomass of introduced species has poten-
tially important implications for ecosystem processes in
lands that have been converted to introduced grass
dominance or that, conversely, have been restored
back to native species dominance. Our results suggest
that grasslands dominated by introduced species in our
region have a greater Xow of energy through the
aboveground pathway and less Xowing to the deeper
soil layer. Restoring native species could reverse this
pattern. A greater proportion of roots in deeper soil
layers may lead to increased drought or frost resistance
(Schenk and Jackson 2002), micronutrient uptake
(McCulley et al. 2004), and in the longer term, to
increased soil C storage (Nepstad et al. 1994, Gill and
Burke 2002). These eVects may become apparent over
a longer time frame (e.g., a decade time frame) than we
looked at here. For example, greater biomass at deeper
rooting depths was found mainly in water-limited sys-
tems (Schenk and Jackson 2002), suggesting a relation-
ship between these two variables. The deeper soil
layers are especially important to soil C storage
because the rate of root decomposition decreases with
depth (Gill and Burke 2002). Although root produc-
tion also declines precipitously with depth, soil C
declines at a much lesser rate (Gill and Burke 2002)
such that the ratio of soil C to biomass is greater in
deeper than in shallow soil layers (Weaver et al. 1935,
Gill et al. 1999). For example, Weaver et al. (1935)
found that »60% of roots but only 17–32% of soil C
was found in the top 15 cm of soil in tallgrass prairies in
eastern Nebraska and western Iowa. Comparable esti-
mates for short grass steppe in Colorado are 66%
roots: 34% soil C in the upper 10 cm (Gill et al. 1999).
The deeper roots of native grasses are more likely to
enter C pools with longer residence times, which may
lead to increased C storage after many growing sea-
sons. Plots will be sampled in future years to test this
hypothesis. Christian and Wilson (1999) found that
Canadian Welds planted 50 years earlier with the intro-
duced grass Agropyron cristatum had lower soil C and
N contents than did native-dominated successional
prairies that were not planted with this species.

These diVerences between native and introduced
grass species, as well as their responses in mixture (Pol-
ley et al. 2003; Wilsey and Polley 2004), should be
taken into account in future studies. Introduced grass
species can suppress forest development (e.g., Hooper

et al. 2004), reduce species diversity (e.g., Christian and
Wilson 1999), aVect N cycling and Wre regimes (e.g.,
D’Antonio and Vitousek 1992; Platt and Grottschalk
2001; Reed et al. 2005), increase soil C sequestration
when properly managed (Fisher et al. 1994), and have
diVerent biomass distributions, on average, compared
to native grass species (this study). We studied just
eight native and introduced species from a single
region in North America with a Wxed-eVects experi-
mental design, so studies in which native and intro-
duced species are replicated under comparable
conditions (e.g., common soil type, age, and planting
density) are required at other sites. Nevertheless, our
results indicate that the native–introduced status of
plant species may be important in interpreting species
eVects on grassland processes like productivity and
plant N accumulation.

Acknowledgments We thank Brad Bauer, Dan Haug and Kim
Wahl with help with sample processing, and Katherine Jones, Kyle
Tiner, and Justin Derner for help in planting and sampling the plots. 

References

Anderson VJ, Briske DD (1999) Herbivore-induced species
replacement in grasslands: is it driven by herbivore tolerance
or avoidance? Ecol Appl 5:1014–1024

Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient
concentration, and net CO2 assimilation of native and inva-
sive species in Hawaii. Oecologia 121:183–192

Bolton H, Smith JL, Link SO (1993) Soil microbial biomass and
activity of a disturbed and undisturbed shrub–steppe ecosys-
tem. Soil Sci Soc Am J 54:887–891

Caldwell M, Richards JH, Johnson DA, Nowak RS, Dzurec RS
(1981) Coping with herbivory: photosynthetic capacity and
resource allocation in two semiarid Agropyron bunchgrass-
es. Oecologia 50:14–24

Callaway RM, Aschehoug ET (2000) Invasive plants versus their
new and old neighbors: a mechanism for exotic invasion. Sci-
ence 290:521–523

Callaway JC, Josselyn MN (1992) The introduction and spread of
smooth cordgrass (Spartina alterniXora) in South San Fran-
cisco Bay. Estuaries 15:218–226

Callaway RM, Thelon GC, Rodriguez A, Holben WE (2004) Soil
biota and exotic plant invasion. Nature 427:731–733

Chapin FS III, Reynolds HL, D’Antonio CM, Eckhart VM (1996)
The functional role of species in terrestrial ecosystems. In:
Walker BH, SteVen WL (eds) Global change and terrestrial
ecosystems. Cambridge University Press, Cambridge

Christian JM, Wilson SD (1999) Long-term ecosystem impacts of
an introduced grass in the northern great plains. Ecology
80:2397–2407

Correll DS, Johnston MC (1979) Manual of the vascular plants of
Texas. University of Texas, Dallas, TX

Craine JM, Lee WG (2003) Covariation in leaf and root traits for
native and non-native grasses along an altitudinal gradient in
New Zealand. Oecologia 134:471–478

Cully AC, Cully JF Jr, Hiebert RD (2003) Invasion of exotic
plant species in tallgrass prairie fragments. Conserv Biol
17:990–998
123



308 Oecologia (2006) 150:300–309
D’Antonio CM, Hobbie SE (2005) Plant species eVects on ecosys-
tem processes: insights from invasive species. In: Sax DF,
Stachowicz JJ, Gaines SD (eds) Species invasions: insights
into ecology, evolution and biogeography. Sinauer Associ-
ates, Inc., Sunderland, MA, pp 65–85

D’Antonio CM, Vitousek PM (1992) Biological invasions by ex-
otic grasses, the grass/Wre cycle and global change. Annu Rev
Ecol Syst 23:63–87

Daehler CC (2003) Performance comparisons of co-occurring na-
tive and alien invasive plants: implications for conservation
and restoration. Annu Rev Ecol Evol Syst 34:183–211

Diggs GM Jr, Lipscomb BL, O’Kennon RJ (1999) Shinners and
Mahler’s illustrated Xora of North Central Texas. Botanical
Research Institute of Texas, Fort Worth, TX

Ehrenfeld JG (2003) EVects of exotic plant invasions on soil
nutrient cycling processes. Ecosystems 6:503–523

Ehrenfeld JG, Kourtev P, Huang W (2001) Changes in soil func-
tions following invasions of exotic understory plants in decid-
uous forests. Ecol Appl 11:1287–1301

Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant inva-
sion alters nitrogen dynamics in an arid grassland. Ecol Appl
11:1301–1311

Fisher MJ, Rao IM, Ayarza MA, Lascano CE, Sanz JI, Thomas
RJ, Vera RR (1994) Carbon storage by introduced deep-
rooted grasses in the South American savannas. Nature
371:236–238

Gill RA, Burke IC (2002) InXuence of soil depth on the decom-
position of Bouteloua gracilis roots in the shortgrass steppe.
Plant Soil 241:233–242

Gill R, Burke IC, Milchunas DG, Lauenroth WK (1999) Rela-
tionship between root biomass and soil organic matter pools
in the shortgrass steppe of eastern Colorado. Ecosystems
2:226–237

Hatch SL, Pluhar J (1993) Texas range plants. Texas A&M Uni-
versity Press, College Station, TX

Holmes TH, Rice KJ (1996) Patterns of growth and soil–water
utilization in some exotic annuals and native perennial
bunchgrasses of California. Ann Bot 78:233–243

Hooper ER, Legendre P, Condit R (2004) Factors aVecting com-
munity composition of forest regeneration in deforested,
abandoned land in Panama. Ecology 85:3313–3326

Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P,
Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Sch-
mid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA
(2005) EVects of biodiversity on ecosystem functioning: a
consensus of current knowledge. Ecol Monogr 75:3–37

Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE,
Schulze ED (1996) A global analysis of root distributions for
terrestrial biomes. Oecologia 108:389–391

Levine JM, D’Antonio CM (1999) Elton revisited: a review of
evidence linking diversity and invasibility. Oikos 87:15–26

Littell RC, Stroup WW, Freund RJ (2002) SAS for linear models,
4th edn. SAS Institute, Cary, NC

Loreti J, Osterheld M, Sala O (2001) Lack of intraspeciWc varia-
tion in resistance to defoliation in a grass that evolved under
light grazing pressure. Plant Ecol 157:195–202

McCulley RL, Jobbáágy EG, Pockman WT, Jackson RB (2004)
Nutrient uptake as a contributing explanation for deep
rooting in arid and semi-arid ecosystems. Oecologia
141:620–628

McDougal AS, Turkington R (2005) Are invasive species the
drivers or passengers of change in degraded systems? Ecol-
ogy 86:42–56

McNaughton SJ (1983) Serengeti grassland ecology: the role of
composite environmental factors and contingency in com-
munity organization. Ecology 53:291–320

Nepstad DC, Decarvalho CR, Davidson EA, Jipp PH, Lefebrvre
PA, Negreiros GH, Dasilva ED, Stone TA, Trumbore SE,
Viera S (1994) The role of deep roots in the hydrological and
carbon cycles of amazonian forests and pastures. Nature
372:666–669

Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Ap-
plied linear statistical methods, 4th edn. McGraw-Hill/Irwin,
Chicago, IL

Olden JD, PoV NL (2003) Toward a mechanistic understanding
and prediction of biotic homogenization. Am Nat 162:442–
460

Platt WJ, Gottschalk RM (2001) EVects of exotic grasses on po-
tential Wre fuel loads in the groundcover of south Florida
slash pine savannas. Int J Wildland Fire 10:155–159

Polley HW, Johnson HB, Derner JD (2002) Soil and plant-water
dynamics in a C3/C4 grassland exposed to a subambient to su-
perambient CO2 gradient. Glob Change Biol 8:1118–1129

Polley HW, Wilsey BJ, Derner JD (2003) Do plant species even-
ness and plant density inXuence the magnitude of selection
and complementarity eVects in annual plant species mix-
tures? Ecol Lett 6:248–256

Pyke D (1990) Comparative demography of co-occurring intro-
duced and native tussock grasses: persistence and potential
expansion. Oecologia 82:537–543

Reed HE, Seastedt TR, Blair JM (2005) Ecological consequences
of C4 grass invasion of a C4 grassland: a dilemma for manage-
ment. Ecol Appl 15:1560–1570

Richards J (1984) Root growth response to defoliation in two Ag-
ropyron bunchgrasses: Weld observations with an improved
periscope. Oecologia 64:21–25

Richardson DM, Pynek P, Rejmánek M, Barbour MG, Panetta
FD, West CJ (2000) Naturalization and invasion of alien
plants: concepts and deWnitions. Divers Distrib 6:93–107

Risser PG, Birney EC, Blocker HD, May SW, Parton WJ, Wiens
JA (1981) The true prairie ecosystem (US/IBP Synthesis Se-
ries 16). Hutchison Ross Publishing, Stroudsberg, PA

Rutherford MC, Pressinger FM, Musil CF (1986) Standing crops,
growth rates and resource use eYciency in alien plant invad-
ed ecosystems. In: Macdonald IAW, Kruger FJ, Ferrar AA
(eds) The ecology and management of biological invasions in
southern Africa. Oxford University Press, Cape Town, pp
189–98

Schenk HJ, Jackson RB (2002) Rooting depths, lateral root
spreads and below-ground/above-ground allometries of
plants in water-limited ecosystems. J Ecol 90:480–494

Seabloom EW, Borer ET, Boucher VL, Burton RS, Cottingham
KL, Goldwasser L, Gram WK, Kendall BE, Micheli F (2003)
Competition, seed limitation, disturbance, and reestablish-
ment of California native annual forbs. Ecol Appl 13:575–592

Simoes M, Baruch Z (1991) Responses to simulated herbivory and
water stress in two tropical C4 grasses. Oecologia 88:173–180

Sims PL, Dewald CL (1982) Old World bluestems and their for-
age potential for the southern Great Plains: a review of early
studies. ARM-S¡28, USDA, New Orleans, LA

Smith MD, Knapp AK (2001) Physiological and morphological
traits of exotic, invasive exotic, and native plant species in
tallgrass prairie. Int J Plant Sci 162:785–792

Soriano A (1991) Río de la plata grasslands. In: Coupland RT
(eds) Ecosystems of the world 8A. Elsevier, Amsterdam

Stevens J (1986) Applied multivariate statistics for the social sci-
ences, 3rd edn. Lawrence Erlbaum, Mahwah

Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005)
Linking leaf and root trait syndromes among 39 grassland
and savannah species. New Phytol 167:493–508

Versfeld DB, van Wilgren BS (1986) Impact of woody aliens on
ecosystem properties. In: Macdonald IAW, Kruger FJ,
123



Oecologia (2006) 150:300–309 309
Ferrar AA (eds) The ecology and management of biological
invasions in southern Africa. Oxford University Press, Cape
Town, pp 239–246

Vilà M, Weiner J (2004) Are invasive plant species better com-
petitors than native plant species?—evidence from pair-wise
experiments. Oikos 105:229–239

Vitousek P (1990) Biological invasions and ecosystem process—
towards an integration of population biology and ecosystem
studies. Oikos 57:7–13

Vitousek P (1994) Beyond global warming: ecology and global
change. Ecology 75:1861–1877

Weaver JE, Houghen VH, Weldon MD (1935) Relation of root
distribution to organic matter in prairie soil. Bot Gaz 96:389–
420

Wedin DA, Tilman D (1990) Species eVects on nitrogen cycling:
a test with perennial grasses. Oecologia 84:433–441

Wedin DA, Tilman D (1996) InXuence of nitrogen loading and
species composition on the carbon balance of grasslands.
Science 274:1720–1723

Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998)
Quantifying threats to imperilled species in the United
States. Bioscience 48:607–615

Wilsey BJ (2005) Importance of species replication to under-
standing plant invasions into North American grasslands. In:
Inderjit (ed) Plant invasions: ecological and agricultural as-
pects. Birkhauser-Verlag, Basel, Switzerland

Wilsey BJ, Polley HW (2003) EVects of seed additions and graz-
ing history on diversity and aboveground productivity of sub-
humid grasslands. Ecology 84:920–932

Wilsey BJ, Polley HW (2004) Realistically low species evenness
does not alter grassland species richness-productivity rela-
tionships. Ecology 85:2693–2700

Wilsey BJ, Potvin C (2000) Biodiversity and ecosystem function-
ing: importance of species evenness in an old Weld. Ecology
81:887–892
123


	Aboveground productivity and root-shoot allocation differ between native and introduced grass species
	Abstract
	Introduction
	Methods
	Experimental design and study area
	Response variables
	Statistical analyses

	Results
	Differences between native and introduced C4 grasses
	Differences between native C4 grasses and forbs
	Variation among species within groups

	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


